Skip to contents

Visualize discharge rating curve model objects

Usage

# S3 method for class 'plm0'
autoplot(
  object,
  ...,
  type = "rating_curve",
  param = NULL,
  transformed = FALSE,
  title = NULL,
  xlim = NULL,
  ylim = NULL
)

# S3 method for class 'plm'
autoplot(
  object,
  type = "rating_curve",
  param = NULL,
  transformed = FALSE,
  title = NULL,
  xlim = NULL,
  ylim = NULL,
  ...
)

# S3 method for class 'gplm0'
autoplot(
  object,
  type = "rating_curve",
  param = NULL,
  transformed = FALSE,
  title = NULL,
  xlim = NULL,
  ylim = NULL,
  ...
)

# S3 method for class 'gplm'
autoplot(
  object,
  type = "rating_curve",
  param = NULL,
  transformed = FALSE,
  title = NULL,
  xlim = NULL,
  ylim = NULL,
  ...
)

Arguments

object

An object of class "plm0", "plm", "gplm0" or "gplm".

...

Not used in this function

type

A character denoting what type of plot should be drawn. Defaults to "rating_curve". Possible types are:

rating_curve

Plots the rating curve.

rating_curve_mean

Plots the posterior mean of the rating curve.

f

Plots the power-law exponent.

beta

Plots the random effect in the power-law exponent.

sigma_eps

Plots the standard deviation on the data level.

residuals

Plots the log residuals.

trace

Plots trace plots of parameters given in param.

histogram

Plots histograms of parameters given in param.

param

A character vector with the parameters to plot. Defaults to NULL and is only used if type is "trace" or "histogram". Allowed values are the parameters given in the model summary of x as well as "hyperparameters" or "latent_parameters" for specific groups of parameters.

transformed

A logical value indicating whether the quantity should be plotted on a transformed scale used during the Bayesian inference. Defaults to FALSE.

title

A character denoting the title of the plot.

xlim

A numeric vector of length 2, denoting the limits on the x axis of the plot. Applicable for types "rating_curve", "rating_curve_mean", "f", "beta", "sigma_eps", "residuals".

ylim

A numeric vector of length 2, denoting the limits on the y axis of the plot. Applicable for types "rating_curve", "rating_curve_mean", "f", "beta", "sigma_eps", "residuals".

Value

Returns an object of class "ggplot2".

Functions

  • autoplot(plm0): Autoplot method for plm0

  • autoplot(plm): Autoplot method for plm

  • autoplot(gplm0): Autoplot method for gplm0

  • autoplot(gplm): Autoplot method for gplm

See also

plm0, plm, gplm0 and gplm for fitting a discharge rating curve and summary.plm0, summary.plm, summary.gplm0 and summary.gplm for summaries. It is also useful to look at spread_draws and gather_draws to work directly with the MCMC samples.

Examples

# \donttest{
library(ggplot2)
data(krokfors)
set.seed(1)
plm0.fit <- plm0(Q~W,krokfors,num_cores=2)
#> Progress:
#> Initializing Metropolis MCMC algorithm...
#> Multiprocess sampling (4 chains in 2 jobs) ...
#> 
#> MCMC sampling completed!
#> 
#> Diagnostics:
#> Acceptance rate: 36.09%.
#> ✔ All chains have mixed well (Rhat < 1.1).
#> ✔ Effective sample sizes sufficient (eff_n_samples > 400).
autoplot(plm0.fit)

autoplot(plm0.fit,transformed=TRUE)

autoplot(plm0.fit,type='histogram',param='c')

autoplot(plm0.fit,type='histogram',param='c',transformed=TRUE)

autoplot(plm0.fit,type='histogram',param='hyperparameters')

autoplot(plm0.fit,type='histogram',param='latent_parameters')

autoplot(plm0.fit,type='residuals')

autoplot(plm0.fit,type='f')

autoplot(plm0.fit,type='sigma_eps')

# }