Skip to contents

Print the summary of a tournament of model comparisons. This function allows for an efficient and fast re-run of the tournament with different methods or winning criteria.

Usage

# S3 method for class 'tournament'
summary(object, method = NULL, winning_criteria = NULL, ...)

Arguments

object

An object of class "tournament"

method

Optional; a string specifying the method to use for the summary. If NULL, uses the method from the original tournament. Options are "WAIC", "DIC", or "PMP".

winning_criteria

Optional; specifies new winning criteria for the summary. If NULL, uses the criteria from the original tournament. See Details in tournament for proper formatting.

...

Not used in this function

Value

Prints the summary to the console.

Details

If either method or winning_criteria is provided, the function re-runs the tournament with the new parameters using the fitted models.

See also

tournament to run a discharge rating curve tournament and plot.tournament for visualizing the model comparison

Examples

# \donttest{
data(krokfors)
set.seed(1)
t_obj <- tournament(Q ~ W, krokfors, num_cores = 2)
#> Running tournament  [                                                ] 0%
#> 
#> Progress:
#> Initializing Metropolis MCMC algorithm...
#> Multiprocess sampling (4 chains in 2 jobs) ...
#> 
#> MCMC sampling completed!
#> 
#> Diagnostics:
#> Acceptance rate: 25.33%.
#> ✔ All chains have mixed well (Rhat < 1.1).
#> ✔ Effective sample sizes sufficient (eff_n_samples > 400).
#> 
#>  ✔  gplm finished   [============                                    ] 25%
#> 
#> Progress:
#> Initializing Metropolis MCMC algorithm...
#> Multiprocess sampling (4 chains in 2 jobs) ...
#> 
#> MCMC sampling completed!
#> 
#> Diagnostics:
#> Acceptance rate: 31.14%.
#> ✔ All chains have mixed well (Rhat < 1.1).
#> ✔ Effective sample sizes sufficient (eff_n_samples > 400).
#> 
#>  ✔  gplm0 finished  [========================                        ] 50%
#> 
#> Progress:
#> Initializing Metropolis MCMC algorithm...
#> Multiprocess sampling (4 chains in 2 jobs) ...
#> 
#> MCMC sampling completed!
#> 
#> Diagnostics:
#> Acceptance rate: 25.66%.
#> ✔ All chains have mixed well (Rhat < 1.1).
#> ✔ Effective sample sizes sufficient (eff_n_samples > 400).
#> 
#>  ✔  plm finished    [====================================            ] 75%
#> 
#> Progress:
#> Initializing Metropolis MCMC algorithm...
#> Multiprocess sampling (4 chains in 2 jobs) ...
#> 
#> MCMC sampling completed!
#> 
#> Diagnostics:
#> Acceptance rate: 36.04%.
#> ✔ All chains have mixed well (Rhat < 1.1).
#> ✔ Effective sample sizes sufficient (eff_n_samples > 400).
#> 
#>  ✔  plm0 finished   [================================================] 100%
summary(t_obj)
#> 
#> === Tournament Model Comparison Summary ===
#> 
#> Method: WAIC 
#> Winning Criteria: Delta_WAIC > 2 
#> Overall Winner: gplm0 
#> 
#> Comparison 1 Results:
#> -------------------------------------------------------------------------------------------------- 
#> complexity   model  winner lppd     eff_num_param  WAIC       SE_WAIC    Delta_WAIC SE_Delta_WAIC
#> more         gplm          20.7794  6.8706         -27.8176   11.8918    0.5570     0.2416      
#> less         gplm0  <---   20.3710  6.7406         -27.2606   12.0360                           
#> 
#> Comparison 2 Results:
#> -------------------------------------------------------------------------------------------------- 
#> complexity   model  winner lppd     eff_num_param  WAIC       SE_WAIC    Delta_WAIC SE_Delta_WAIC
#> more         plm           5.5842   4.2574         -2.6536    6.6635     -0.4066    0.1904      
#> less         plm0   <---   5.6284   4.0984         -3.0601    6.6931                            
#> 
#> Comparison 3 Results:
#> -------------------------------------------------------------------------------------------------- 
#> complexity   model  winner lppd     eff_num_param  WAIC       SE_WAIC    Delta_WAIC SE_Delta_WAIC
#> more         gplm0  <---   20.3710  6.7406         -27.2606   12.0360    24.2005    9.1834      
#> less         plm0          5.6284   4.0984         -3.0601    6.6931                            
#> 
#> === End of Summary ===

# Re-run summary with different method
summary(t_obj, method = "DIC")
#> 
#> === Tournament Model Comparison Summary ===
#> 
#> Method: DIC 
#> Winning Criteria: Delta_DIC > 2 
#> Overall Winner: gplm0 
#> 
#> Comparison 1 Results:
#> -------------------------------------------------------------------------- 
#> complexity   model  winner D_hat      eff_num_param  DIC        Delta_DIC 
#> more         gplm          -42.7732   6.0631         -30.6470   0.8498    
#> less         gplm0  <---   -42.4880   6.3454         -29.7972             
#> 
#> Comparison 2 Results:
#> -------------------------------------------------------------------------- 
#> complexity   model  winner D_hat      eff_num_param  DIC        Delta_DIC 
#> more         plm           -11.3400   2.9739         -5.3923    -0.3058   
#> less         plm0   <---   -11.4712   2.8865         -5.6982              
#> 
#> Comparison 3 Results:
#> -------------------------------------------------------------------------- 
#> complexity   model  winner D_hat      eff_num_param  DIC        Delta_DIC 
#> more         gplm0  <---   -42.4880   6.3454         -29.7972   24.0991   
#> less         plm0          -11.4712   2.8865         -5.6982              
#> 
#> === End of Summary ===

# Re-run summary with different winning criteria
summary(t_obj, winning_criteria = "Delta_WAIC > 3")
#> 
#> === Tournament Model Comparison Summary ===
#> 
#> Method: WAIC 
#> Winning Criteria: Delta_WAIC > 3 
#> Overall Winner: gplm0 
#> 
#> Comparison 1 Results:
#> -------------------------------------------------------------------------------------------------- 
#> complexity   model  winner lppd     eff_num_param  WAIC       SE_WAIC    Delta_WAIC SE_Delta_WAIC
#> more         gplm          20.7794  6.8706         -27.8176   11.8918    0.5570     0.2416      
#> less         gplm0  <---   20.3710  6.7406         -27.2606   12.0360                           
#> 
#> Comparison 2 Results:
#> -------------------------------------------------------------------------------------------------- 
#> complexity   model  winner lppd     eff_num_param  WAIC       SE_WAIC    Delta_WAIC SE_Delta_WAIC
#> more         plm           5.5842   4.2574         -2.6536    6.6635     -0.4066    0.1904      
#> less         plm0   <---   5.6284   4.0984         -3.0601    6.6931                            
#> 
#> Comparison 3 Results:
#> -------------------------------------------------------------------------------------------------- 
#> complexity   model  winner lppd     eff_num_param  WAIC       SE_WAIC    Delta_WAIC SE_Delta_WAIC
#> more         gplm0  <---   20.3710  6.7406         -27.2606   12.0360    24.2005    9.1834      
#> less         plm0          5.6284   4.0984         -3.0601    6.6931                            
#> 
#> === End of Summary ===
# }